Extended Exton’s Triple and Horn’s Double Hypergeometric Functions and Associated Bounding Inequalities
نویسندگان
چکیده
This paper introduces extensions H4,p and X8,p of Horn’s double hypergeometric function H4 Exton’s triple X8, taking into account recent Euler’s beta function, confluent function. Among the numerous extended functions, primary rationale for choosing X8 is their comparable extension type. Next, we present various integral representations Euler Laplace types, Mellin inverse transforms, Laguerre polynomial representations, transformation formulae, a recurrence relation functions. In particular, provide generating several bounding inequalities X8,p. We explore utilization within probability distribution. Most special such as generalized Beta p-extended integral, exhibit natural symmetry.
منابع مشابه
Inequalities of extended beta and extended hypergeometric functions
We study the log-convexity of the extended beta functions. As a consequence, we establish Turán-type inequalities. The monotonicity, log-convexity, log-concavity of extended hypergeometric functions are deduced by using the inequalities on extended beta functions. The particular cases of those results also give the Turán-type inequalities for extended confluent and extended Gaussian hypergeomet...
متن کاملA Subclass of Analytic Functions Associated with Hypergeometric Functions
In the present paper, we have established sufficient conditions for Gaus-sian hypergeometric functions to be in certain subclass of analytic univalent functions in the unit disc $mathcal{U}$. Furthermore, we investigate several mapping properties of Hohlov linear operator for this subclass and also examined an integral operator acting on hypergeometric functions.
متن کاملIntegral Properties of Zonal Spherical Functions, Hypergeometric Functions and Invariant
Some integral properties of zonal spherical functions, hypergeometric functions and invariant polynomials are studied for real normed division algebras.
متن کاملTurán Type Inequalities for Hypergeometric Functions
In this note our aim is to establish a Turán type inequality for Gaussian hypergeometric functions. This result completes the earlier result that G. Gasper proved for Jacobi polynomials. Moreover, at the end of this note we present some open problems.
متن کاملTurán type inequalities for q-hypergeometric functions
In this paper our aim is to deduce some Turán type inequalities for q-hypergeometric and q-confluent hypergeometric functions. In order to obtain the main results we apply the methods developed in the case of classical Kummer and Gauss hypergeometric functions. c ⃝ 2013 Elsevier Inc. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2023
ISSN: ['0865-4824', '2226-1877']
DOI: https://doi.org/10.3390/sym15061132